Question 2. The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly

- a) 1.2 nm (b) 1.2 x 10⁻³ nm
- (c) 1.2 x 10⁻⁶ nm (d). 1.2 x 10 nm

$$E = hv = \frac{hc}{\lambda}$$
; where $c = \text{Speed of light}$, $h = \text{Planck's constant} = 6.6 \times 10^{-34}$

J-sec, v = Frequency in Hz, $\lambda =$ the minimum wavelength of the photon required to eject the proton from nucleus.

In electron volt,
$$E(eV) = \frac{hc}{e\lambda} = \frac{12375}{\lambda(\text{Å})} \approx \frac{12400}{\lambda(\text{Å})}$$

According to the problem,

Energy of a photon, $E = 1 \text{ MeV or } 10^6 \text{ eV}$

Now,
$$hc = 1240 \text{ eV nm}$$

Now,
$$E = \frac{hc}{\lambda}$$

$$\Rightarrow \lambda = \frac{hc}{E} = \frac{1240}{10^6} \text{nm}$$
$$= 1.24 \times 10^{-3} \text{ nm}$$